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The method of solving variational problems of gas dynamics stated here is based 
on reducing them to the problems of nonlinear programing. The basic compo- 

nents of the computational algorithm consists of direct computation of the gas 
flow field and of a method of obtaining an extremum for a functionofmany va- 

riables. The features of the method are discussed in the course of solving the 

variational problems of constructing supersonic contours for maximum thrust 
nozzles, and in the problem of constructing the contour of a nozzle with a plane 
transition surface. 

At present, the most commonly used method of investigating the variational 
problems of two-dimensional gas dynamics is the general method of Lagrange 
multipliers in the form first introduced in [l, 23. Since the dependence of the 

optimal solution on the system of necessary extremal conditions obtainedby this 
method is, as a rule, implicit, it means that iterative procedures mustbe emp- 

loyed to obtain it in numerical form. A step in such a procedure presumes the 

computation of the field of flow for the given boundaries of the region, the com- 
putation of the Lagrange multipliers over this field taking into account theequa- 

tions of flow in the functional of the variational problem, and after this,a more 
accurate determination of the form of the contour. Considerable difficulties 

arise during such procedures, connected with the necessity of solving a system 

of partial differential equations in order to obtain the Lagrange multipliers. It 

is basically for this reason, that all variational problems solved up to now refer 
only to the supersonic flows for which the partial differential equations men- 

tioned above are of hyperbolic type. 

1, Let x and y be the rectangular coordinates. We consider an arbitrary stationary 
plane or axisymmetric gas dynamic flow. We require to construct a contour Y = 5 (Z) 
of an aerodynamic body immersed in this flow and producing an extremal value to the 

functional 

J = s” @ (2, i& c’, sl, . . . , u,) dz CL 11 
A 

where @ is a known function, {ui} (i = 1, . . . , n) is a system of functions SatiS- 
fying the equations of flow, A and B denote the initial and the final points. Here and 

below the prime denotes the derivatives with respect to x taken along the contour. We 

consider the following isoperimetric conditions: 
B 

Kj = s Gj(x,&c’)dX, i=l, -. . t m (1.21 
A 

where Gj (s, %, 5’) and Kj are known functions and constants. We USt: the form (1.1) 
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to describe, e. g. the axial component of the nozzle thrust, the wave drag, etc. 
Let us define the required optimal contour as follows: 

Y’ (x) = c,, (3) + A 5 (z), YPO) = yo (1.3) 

where &, (2) is a known function, x,, is the initial point of the contour and AC (z) is 

approximated by a segment of the series 

At(z) = k$% (2) (1.4) 

Here {Q) denotes a system of linearly independent basis functions and ck are the coef- 

ficients. Then, for the contour specified by (1.3) and (1.4), we have 

J = J (cl, . . ., C,) r<l 

where r is chosen so that I - r coefficients in (1.4) satisfy the isooerimetric condi- 

tions (1.2). 
Thus, the variational problem of determining the optimal form of the contour under 

the specified conditioqreduces to that of determining the point (cr, . . ., c,) at which 

the function assumes an extremal value. The extremum of the function of many varia- 
bles is obtained using the methods of nonlinear programing. The comoonents of the gra- 

dient of the function J are obtained by the formulas 

aJ/ac k s [J (cl, . . ., ck + Ack, . . ., c,> - 
J (cl, . . ., CA] / Ac,c 

(1.5) 

aJiac k z [J (cl, . . ., ck + Ac,tt . . at cd - 

J (c,, . . . , ck - ACk, . . ., &)I / (2ACd 
(1.6) 

in which the function J is computed by (1. l), after computing the field of flow for the 
contour specified in the form (1.3) and (1.4). 

If the optimal configuration of the contour must contain internal corner points the po- 
sitionsof which are not known in advance, then each smooth segment is approximated 
in the manner similar to that described in (1.3) and (1.4). In this case the coefficients 

of the approximating expressions describing the smooth segments with the end conditions 
taken into account,serve as the arguments of the function J 

2. Problems arising in connection of the choice of the basis functions (Q) and of 
the method of determining the extremum, were investigated on a variational problem 
of constructing the supersonic part of a maximum thrust nozzle for the case of an irro- 

tational flow of a perfect gas. Various type polynomials were used as systems of the basis 
functions. The Chebyshev polynomials gave the best results. The example which follows 
shows, why these polynomials are the most suitable for use with the methods of nonlinear 
programing. Let 

Y*=o.2+&k(+)k. y(O)=1 (2.1) 

(2.2) 
k=2 

be two approximations to the contour of the supersonic section of an axisymmetricnozzle. 
Power polynomials are used in (2. l), and the Chebyshev polynomials Th. (5 / 2) and 
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0 d z B 2 axe used in (2.2). Figure 1 depicts the level lines of the function 

B 

J (~2, 4 = s (P - ~+f~y’ dx 

A 

The latter function determines, with the accuracy of up to the constant multiplier, the 

thrust of the supersonic sections of the nozzles. The solid lines correspond to the contours 

(2, l), and the dashed lines to (2.2) (the curves 1, 2 and 3 correspond to the values 0.55, 
0.5, and 0.4). Here p denotes the pressure at the nozzle contour, and p+ is the external 

pressure. The thrust was calculated for an irrotational axisymmetric perfect gas flow with 
the plane transition surface passing through the point t = 0. 

Fig, 1 Fig. 2 

The success of the application of the methods for locating an ex~emum of a function 

of many variables, which uses the approximate expressions (1.5) and f 1.6) to calculate 

the projections of the gradient, depends to a large extent on the shape of the region in 
which the search is carried out, When the regions are narrow and have abrupt turns, the 

errors in the approximation to the gradient components calculated according to (1.5) and 
(L 6) are considerable, and this upsets the convergence of these methods 81. This, toge- 
ther with the procedure for solving the variational problems given below, confirms the 
suitability of the choice of the Chebyshev polynomials as the basis functions. 

A large number of computations had to be performed in order to choose a suitableme- 

thod for locating the extremum of a function of many variables, Thus, in solving the va- 
riational problems of constructing axiaymmetric nozzles of maximum thrust for a perfect 
gas we tested the Newton’s method l4], the method of steepest descent and the modified 
Davidon method 153. The method of [S] was found to be the most effective. Below we 
compare the results of the computation of We thrust prociuced by the supersonic section 
of an ax&symmetric nozzle for an irrotational flow of a perfect gas, obtained by the me- 
thod of steepest descent and by the method of f5], depending on the number of times the 

flow field was computed, 
The gradient method 9 22 33 54 65 75 121 

Jf;P 753 764 771 780 788 790 9.9791 

$66) 
0.0792 

The method of [S] 9 24 37 52 62 
Jl;04 753 790 798 802 802 

The optimal nozzle contour was sought in the form 
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y’ = 0.12 +&CT, (+) 

k=l 

Y (0) = $9 O<x63 
for a flow with a plane transition surface passing through the point 2 I 0, the adiabatic 
index equal to y = 5.14 and the ratio P+ lpp = 0.25 where p. is the stagnation pres- 
sure. The flow field was computed using the method of characteristics. The integral laws 
of con~rva~on of mass and momen~m were satisfied with the accuracy of up to 0.05%. 
The contour obtained by the method of [S] after n = 52 recomputationsof the flow field, 
and the optimal contour obtained using the general method of Lagrange multipliers, prac- 
tically coincide, So do the values of the thrust functional J = 0.0802. Use of the me- 
thod of [5] on a computer gives a solution of the problem in about 20 min. The results 
quoted show that the method of steepest descent converges slowly near the maximum, 
and this makes it unsuitable for solving the variational problems of gas dynamics. 

We note that the formula (1.5) requires fewer recomputations of the flow field than the 
approximation (1,6). However, the requirement that the components of the gradient are 
calculated with use of the formula (1.5) (which is a first order approximation) to a pre- 
scribeddegree of accuracy, can be satisfied only by appreciable reduction of the step 
ACg. This, in turn, leads to errors in computing the gradient components caused by the 
fact that the values of J (cl,. . ,, c,) are computed approximately. In other words, the 
values J (cl, , . ., Ck + AC , . . ., 4 and J (cl,. . ., cr) deviate at small AC,, by the 
amount comparable to the computational error in the value of the function J (cl,. . ., c,.). 

3, The supersonic part of the axisymmetric contour of a compound nozzle intended 
to operate in two basicaIly different modes, is an example of an optimal confi~ra~on 
containing internal corner points, The complete nozzle works in the conditions of re- 
duced external pressure p +, Under the conditions of increased external pressure p+* the 
final section of the complete nozzle is retracted (or jettisoned), We specify the maxi- 
mum permissible length of the complete nozzle, the counterpressures p+and p+‘and the 
probabilities fi and 1 - n of utilization of the complete nozzle and of its part. The 
op~mization of the ~symme~ic compound nozzle {Fig. 2) is carried out for the average 
thrust of the supersonic part of the nozzle which is equal, with the accuracy of up to a 
nonessential multiplier is 

d b 

Xm = i pyy ‘dx f n pyy’dx - + yb”p’ - + yd'p+* 
a 

where ad denotes the segment of the tmncated nozzle and db is the final parf _af the 
nozzle. The corresponding variational problem was formulated and solved numerically 
using the general method of Lagrange multipliers, in [6]. 

To reduce this problem to the problem of nonlinear programing, we describe the con- 
tour to be determined. in the form 

Y’ (x) = 
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where xd is the abscissa of the point d. The ordinate of d is chosen from the condition 
of the contact between the initial and final section of the contour. The extremumofthe 

thrust iimctional is searched for in the space of variables {a,, a,, as, Zdr CO, Cl, cp}. 

The computations were performed to find the values of the coordinates and tangents 
of the angles of inclination at the characteristic points of the contour of the optimal 

compound nozzle, for the case of an irrotational flow of a perfect gas with the adiabatic 

index ‘y = 1.4, for the permissible length X = 2.91 of the nozzle and for the following 
values of the parameters: P+o = 0.0048, p+ = 0.116, n = 0.35. (The nozzle lengthis 
referred to the radius of critical cross section, and the external pressures to the expression 

p*oaa, where o* and p,, denote the critical velocity of the flow). The results obtained 

agree with the results of [6] where the general method of Lagrange multipliers are used. 

It should be noted that the authors of [6] have solved a simpler “inverse problem” in 
which the values of Ya’ of the corner angle of the contour at the point d Ay’ = y’ (%d $_ 

0) - I/’ bd - 0) and of the coordinates xr and Zh determining the positions of the points 

2 and h on the closing characteristic of the first fan of the expansion wave (Fig. Z),were 

all assumed specified. 

4, We illustrate the scope of application of the methods of nonlinear programing in 
solving the variational problems of the subsonic and transonic flows, by constructing the 

subsonic part of a nozzle guaranteeing a parallel sonic flow through the smallest cross 

section. The problem is usually solved as the inverse problem of the Lava1 nozzle fl] 

theory. However it can also be formulated as a variational problem. 
Let us e.g. require to construct a contour of the subsonic part of an axisymmetric noz- 

zle, passing through a specified point (x0, y,J = (0,2) at the initial cross section with 

zero inclination and realizing, at the specified minimum cross section x = 2, 0 < 
Y<l* a flow with a plane transition surface. To solve this problem, we approximate 

the required contour with the ploynomial = 

The coefficients Ck are found from the conditions of the contour end points 

y (0) = 2, y’ (0) = 0, y (9 = 1, y’ (2) = 0 

and from the condition of the minimum of the functional 

J = 1 [(u - a)” + u2] &y 
0 

where u and 2, are the projections of the velocity of the gas flow on the x - and y-axes, 
respectively, and a denotes the local speed of sound computed arthe minimum cross 

set tion. 
The flow field was calculated by the time-dependence method ( * ) described in [8]. 

The dimension of the difference grid in the xy -plane was 45 X 20. The integral laws 
of conservation of mass, momentum, and energy were satisfied with an accuracy within &P/J. 

Contour 1 obtained in the first approximation and 2 constructed as the result of solving 
the problem, and also projections of gas velocity u calculated at nozzle throats :>ounded 

(9 Editors’s Note. Verbatim translation from Russian 1s . “the method of establishment”. 
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by these contours are shown in Fig.3. Solution of the problem had necessitated 78 rever- 

sions to the calculation of the flow field and about 20 hours time on the computer. To 

reduce the time required by the time-dependence method for determining gradient com- 

ponents, flow parameters corresponding to the contour of preceding approximation were 

selected as the initial field. 

In conclusion we note that the method will succeed only if the singularities of theop- 
timal solution are known. This is illustrated by the problem of an optimal compound 

nozzle. In order to discover in which class of functions the solution should be sought, it 
is necessary to carry out a preliminary analysis of the variational problem using, e. g. 

the general method of Lagrange multipliers. 

The main features of the proposed computational algorithm, are the calculations of the 
flow field, and the search for the extremum of the function of many variables using the 
well developed methods of nonlinear programing. This determines the chief merits of 
the method, namely, the simplicity of execution’and the universal applicability to the va- 
riational problem of subsonic and supersonic equilibrium and nonequilibrium flows, for 
which methods of computing the flow fields are available. 

The authors thank A, N. Kraiko for the interest shown and A. D. Rychkov for supplying 

a program for computing the subsonic flows. 
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